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We investigate lattice Boltzmann �LB� modeling of multicomponent diffusion for finite Knudsen numbers.
Analytic solutions for binary diffusion in narrow channels, where both molecular and Knudsen diffusion are of
importance, are obtained for the standard and higher-order LB methods and validated against the results from
the direct simulation Monte Carlo �DSMC� method. The LB methods are shown to reproduce the diffusion slip
phenomena. In the DSMC method, while fluid particles are diffusely reflected on a wall, significant component
slip and a kinetic boundary layer are observed. It is shown that a higher-order LB method accurately captures
the characteristics observed in the DSMC method.

DOI: 10.1103/PhysRevE.79.016702 PACS number�s�: 47.11.�j, 47.61.�k, 05.20.Dd

I. INTRODUCTION

Diffusion in nanoscale confined geometry is observed in
both nature and engineering applications, e.g., catalysis and
fuel cells. For the small Knudsen number �Kn� limit, where
the characteristic length of the geometry is much larger than
the mean free path of molecules, the diffusional flux is domi-
nated by molecular collisions, and the constitutive relation
between the flux and the concentration gradient is given by
Fick’s law �1� for binary mixtures away from a wall. For the
large Kn limit, on the other hand, the flux is governed by
collisions with walls, and the analytic solution for the mass
flow rate is known for a simple geometry �2�. The focus of
this paper is on multicomponent gaseous diffusion in the
intermediate Kn regime, where both molecular and Knudsen
diffusion are of importance.

For liquid-wall interactions of a binary mixture, Koplik
and Banavar �3� showed that the individual species velocities
vanish at a wall in their molecular dynamics �MD� simula-
tions, which means the breakdown of Fick’s law in the vi-
cinity of a wall �4�. However, the thickness of the boundary
layer where a conventional Fick’s law breaks down was
shown to be just about one diameter of liquid molecules, and
Fick’s law holds in most of the considered region �5�. In
contrast to liquid, Mo and Rosenberger �6� found significant
�component slip� for a gas mixture in their MD simulations
and argued that the no-slip boundary condition for the small
Kn limit results from the cancellation of the slip velocities
for different components.

The slip phenomena in multicomponent mixtures have
been extensively studied in the kinetic theory community
�7–9�. Similar to slip velocity in the presence of velocity
gradients, for multicomponent mixtures, concentration gradi-
ents parallel to a wall can also cause slip, the phenomena
known as “diffusion slip.” Diffusion slip phenomena were
first discussed in Kramers and Kistemaker �10�, where a for-
mula for the diffusion slip velocity has been obtained using a

simple kinematic argument, and several computational and
theoretical studies for the diffusion slip have been performed
after this pioneering work �7–9�.

The lattice Boltzmann �LB� method �11–15� is a reduced-
order kinetic model to reproduce hydrodynamics at the
Navier-Stokes order or beyond. While the LB method is de-
signed originally to mimic the Navier-Stokes hydrodynam-
ics, significant progress in the modeling of single-component
micro- and nanoscale flows has recently been made, espe-
cially for fluid-wall interaction models �16–21� and higher-
order LB methods �22–24�. The slip velocity in multicompo-
nent Couette flow has also been investigated for the standard
LB method �25�. While one of the advantages of the LB
method is the capability to model the physics of multicom-
ponent and multiphase flows at a mesoscopic level �13,16�, it
remains an open question whether the LB method is able to
capture the characteristics of multicomponent diffusion in
the intermediate Kn regime and the diffusion slip.

In this paper, we investigate LB modeling of multicom-
ponent diffusion for finite Knudsen numbers. In Sec. II, the
LB equation for the binary mixture is presented. In Sec. III,
analytic solutions for binary diffusion in narrow channels are
obtained for the standard and higher-order LB methods. In
Sec. IV, the analytic and numerical solutions for the LB
methods are validated against reference solutions obtained
using the direct simulation Monte Carlo �DSMC� method
�26�, and discussed with emphasis on the dependence of the
diffusion flux on Kn, the diffusion slip, and the discrete lat-
tice effects. The paper ends with the summary of the main
conclusions.

II. LATTICE BOLTZMANN METHOD FOR
MULTICOMPONENT MIXTURES

A. Discrete velocity BGK equation for multicomponent
mixtures

Here, the kinetic equation for the binary mixture is based
on the Bhatnagar-Gross-Krook �BGK� collision model �27�.
The generalized model of Sirovich �28,29� can be written as*shkcomb@stanford.edu
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�t f
� + c���f� + g�

��c�
f� = J�� + J��, �1�

where f� is the velocity distribution function of the species
�, c� is the molecular velocity in the � direction, and g�

� is an
acceleration. The self-collision term J�� and the cross-
collision term J�� are given by

J�� = −
1

��

�f� − f��0�� , �2�

J�� = −
1

���

1

c�
2 ��1 − ��f��0��c� − u�

�� + �f���0��c� − u���

��u�
� − u�

� � , �3�

f��0� =
��

�2	c�
2�D/2 exp�−

�c� − u�
��2

2c�
2 � , �4�

f���0� =
��

�2	c�
2�D/2 exp�−

�c� − u��2

2c�
2 � , �5�

where �� is the relaxation time for self-collisions, ���

=����� /�� is the relaxation time for cross collisions, c�

=�kBT /m�, kB is the Boltzmann constant, and m� is the mass
of a � molecule. When �=0, the original model of Sirovich
is recovered.

The discrete velocity Boltzmann �DVB� equation for the
binary mixture �30� can be written as

�t f i
� + ci�,���f i

� = Ji
�� + Ji

�� + Fi
�, �6�

where f i
� is the distribution function of the species � for the

discrete velocities ci�,�. The linear collision operators and
forcing terms are given by

Ji
�� = −

1

��

�f i
� − f i

��0�� , �7�

Ji
�� = −

1

�D

wi����

�

ci�,��u�
� − u�

� �
cs,�

2 , �8�

f i
��0� = wi���1 +

u�
�ci�,�

c�
2 	 , �9�

Fi
� = wi

g�
�ci�,�

c�
2 , �10�

where �D is the relaxation time, and wi is the weight for the
discrete velocity ci�. In microscale flows with low Mach
number, higher-order terms in the equilibrium functions and
the forcing term have negligible influence on the evolution of
conserved moments, and only the linear terms are retained
here �31�. The form of the linear equilbrium functions does
not depend on �. For the two-dimensional nine-velocity
�D2Q9� scheme, the discrete velocities are given as

cix,� = �3c�
0,1,0,− 1,0,1,− 1,− 1,1� , �11�

ciy,� = �3c�
0,0,1,0,− 1,1,1,− 1,− 1� , �12�

where i=0,1 , . . . ,8. The weights are given as w0=4 /9, w1
=w2=w3=w4=1 /9, and w5=w6=w7=w8=1 /36. The fourth-
order Gauss-Hermite quadrature uses the quadrature points,

a and 
b, with the weights wa and wb, respectively, where
a=�3−�6, b=�3+�6, wa= �3+�6� /12, and wb= �3
−�6� /12. The two-dimensional �2D� quadrature D2Q16 can
be obtained by the product formula of the 1D fourth-order
Gauss-Hermite quadrature �32,23�. Here, the discrete veloci-
ties are indexed as

cix,� = c�
a,− a,b,− b,a,− a,b,− b,a,− a,b,− b,a,− a,b,− b� ,

�13�

ciy,� = c�
a,a,a,a,− a,− a,− a,− a,b,b,b,b,− b,− b,− b,− b� ,

�14�

where i=1,2 , . . . ,16.
The species density �� and the species momentum density

j�
� are the lower moments of the distribution functions:

� f i
� = ��, �15�

� ci�,�f i
� = j�

� = ��u�
�. �16�

The fluid mixture density � and barycentric velocity u� are
given by

� = �� + ��, �17�

j� = �u� = ��u�
� + ��u�

� . �18�

The dynamic viscosity for the DVB equation is given by

� = p�X��� + X���� , �19�

where p is the pressure and Xj is the mole fraction of species
j. In multicomponent mixtures, however, the viscosity is not
the linear function given in Eq. �19� but shows complex de-
pendence on Xj. To remedy this deficiency of the BGK
model, the viscosity is assumed to be given by the modified
Wilke formula �33,34�:

� = �
j

Xj� j

�kXk� jk
, �20�

where

� jk =
1
�8

�1 +
mj

mk
	−1/2�1 + � � j

�k
	1/2�mk

mj
	1/4�2

.

The relaxation time � j is then given by �25�

� j =
� j

p�kXk� jk
. �21�

The relaxation time �D is determined by the binary diffusion
coefficient D.

B. Finite difference lattice Boltzmann equation

In the multispeed LB methods for multicomponent mix-
tures, because of the variations in the speed of sound due to
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different species masses, not all of the quadrature points co-
incide with the lattice points. Therefore the propagation-
collision dynamics are not applicable. While several ap-
proaches have been proposed to apply the LB method in the
off-lattice grid system, the finite difference method �35,36� is
employed here.

Applying the forward Euler method for time discretiza-
tion and the second-order total variation diminishing �TVD�
scheme for spatial discretization, we obtain

f i
��x,y,t + 
t� = f i

��x,y,t� + �i
��x,y,t�
t + Fi

��x,y,t�
t

+ 
t

cix,�



x
� f i

��x +
cix,�


cix,�


x

2
,y,t	

− f i
��x −

cix,�


cix,�


x

2
,y,t	�

+ 
t

ciy,�



x
� f i

��x,y +
ciy,�


ciy,�


x

2
,t	

− f i
��x,y −

ciy,�


ciy,�


x

2
,t	� , �22�

where 
t and 
x are the time step and the �uniform� grid
spacing, respectively. The face values are given by

f i
��x +

cix,�


cix,�


x

2
,y,t	 = f i

��x,y,t�

+
�

2
� f i

��x +
cix,�


cix,�


x,y,t	

− f i
��x,y,t�� . �23�

The flux limiter � is chosen such that the scheme is globally
of second order and TVD. The MUSCL scheme of van Leer
�37� is used here for the flux limiter. While the implicit treat-
ment of the collision terms improves the numerical stability
in high Reynolds number �Re� flows �36�, it is not essential
for low Re flows.

III. MOLECULAR AND KNUDSEN DIFFUSION IN
NARROW CHANNELS

The analytic solution of the DVB equation for the binary
mixture is obtained for the problem of diffusion in narrow
channels. Since the LB equation is consistent with the DVB
equation when 
t→0 and 
x→0, the DVB equation will
also be referred to as the LB equation, hereafter, for conve-
nience. The solution method is based on that of Ansumali et
al. �22�, where a moment system corresponding to the LB
equation is solved.

The species diffusion is driven by a constant concentra-
tion gradient in the opposite direction for the two species.
The pressure gradient is therefore zero. The fluid particles
are assumed to be reflected diffusely on a wall. This simple
problem contains the essential features of multicomponent
diffusion at finite Kn. The distribution of the species mass
flux along the transverse direction y and the total species

mass flux are obtained and compared with DSMC solutions
for a range of Kn defined by � /H, where � and H are the
mean free path of the molecules and the channel height, re-
spectively. Impermeable walls are located at y=H /2 and
−H /2.

In multicomponent mixtures, the mean free path can be
defined by

� = �
j

Xj� j , �24�

where � j is the mean free path of the �single component�
species j for given p and T, and given by �21�

� j =�	

2

� jcj

p
. �25�

From these equations, the dynamic viscosities �� and �� for
given p and T are obtained, and the relaxation times �� and
�� are determined by Eq. �21�. Considering that the mean
free path is not well defined except for hard-sphere mol-
ecules �21�, an alternative definition of the mean free path
�9,26� can also be used. For meaningful comparisons, how-
ever, the definition of the mean free path used in the LB
method should be consistent with that in other reference
methods �21�. Here, the definition of Eq. �24� is used for
both the LB method and the DSMC method.

A. Standard LB method

For the standard D2Q9 scheme, a moment system mj
� can

be written as �22,38�

mj
� = �

i

ej,i
� f i

� = 
��, jx
�, jy

�,Pxx
� ,Pxy

� ,Pyy
� ,Qxyy

� ,Qyxx
� ,R�� ,

�26�

where

ej,i
� = 
1,cix,�,ciy,�,cix,�

2 ,cix,�ciy,�,ciy,�
2 ,cix,�ciy,�

2 ,ciy,�cix,�
2 ,

�cix,�
2 − c�

2��ciy,�
2 − c�

2�� . �27�

Equations for all moments mj
� can be derived from the LB

equation. Here, we will only derive an analytic expression
for mass fluxes.

For the present problem, we replace the concentration
gradient with a body force ��h� and use the decomposition
c�

2��,0=c�
2��+��h�x, where x is the streamwise direction.

Then, jy
�=0 and �� is spatially uniform. The species mass

flux is obtained from the following equations:

�yPxy
� = ��h� −

1

�D
jx
��, �28�

�yQxyy
� = −

1

�
Pxy

� , �29�

3c�
2�yPxy

� = −
1

�
�Qxyy

� − c�
2��ux

�� −
c�

2

�D
jx
�� + c�

2��h�, �30�

where jx
��=���� /��ux

�−ux
��. From Eqs. �28� and �30�, the en-

ergy flux Qxyy
� is given by

LATTICE BOLTZMANN MODELING OF MULTICOMPONENT… PHYSICAL REVIEW E 79, 016702 �2009�

016702-3



Qxyy
� = − 2�c�

2���h� −
1

�D
jx
��	 + c�

2��ux
�. �31�

Substituting this equation into Eq. �29� and differentiating
the resulting equation with respect to y, we obtain

���y
2ux

� = − 2
��

�D
�y

2jx
�� −

1

��c�
2�D

��D��h� − jx
��� , �32�

from which we obtain

�� + 2�1��y
2jx

�� = −
1

�2cs
2�2

��D��h� − jx
��� , �33�

�y
2jx = − 2

�m1

�
�y

2jx
�� −

�m2

�2cs
2�

��D��h� − jx
��� , �34�

where �=�����, ��=�� /�, �=�D /�, �m1=��−��, �1
= �X�m���+X�m���� /m, �2=m / ��m�m����X�+��X���, m
=m�X�+m�X�, �m2= ���m�−��m�� /�m�m�, and cs=�c�c�.
X� is the mole fraction of species �.

For a system without a wall, the left-hand side of Eq. �33�
vanishes, and the diffusion flux is given by the classical
Fick’s law of diffusion:

jx
�� = �D��h� = − �D � Y�, �35�

where Y� is the mass fraction of species �. In general, the
solution can be written as

j̄x
�� = A cosh��

y

�cs
	 , �36�

jx = �− 2
�m1

�
+

�m2

�2�
	 j̄x

�� + B , �37�

where

j̄x
�� = jx

�� − �D��h�, �38�

� =
1

��2�1 + ���2

. �39�

The shear stress is given by

Pxy
� = −

Acs

��
sinh��

y

�cs
	 . �40�

When obtaining Eqs. �36� and �40�, the symmetry condition
is used.

The constant A can be obtained from the boundary con-
dition of the distribution functions. At the bottom wall, the
particles are reflected diffusely. The kinetic boundary condi-
tion with diffuse scattering kernel �17� can be written as


f i
�
y=−H/2 = 
�f i

��0�
w, for ciy,� � 0, �41�

where

� =
��cj�,�−u�w�n��0
�cj�,� − u�w�n�

f j

�
y=−H/2

��ck�,�−u�w�n��0
�ck�,� − u�w�n�

fk
��0�
w

. �42�

Here, n� is the inward wall-normal vector, u�w is the velocity
of the wall, and 
f i

��eq�
w is the equilibrium distribution evalu-
ated using wall boundary conditions. For the present prob-
lem, the diffuse scattering boundary condition reduces to
�31�


f i
�
y=−H/2 = 
f i

��0�
w = ��wi, for ciy � 0. �43�

The nonequilibrium distribution function at the wall is then
given by


f i
��neq�
y=−H/2 = 
��wi − f i

��0�
y=−H/2, for ciy � 0. �44�

Using Eq. �44�, we obtain

� c�

��

�f5
��neq� − f6

��neq�� −
c�

��

�f5
��neq� − f6

��neq���
y=−H/2

= −
�3

18

ux

��
y=−H/2 = −
�3

18

�

����

��D��h� + A cosh���/2�� ,

�45�

where �=H / ��cs�. Alternatively, the nonequilibrium distri-
bution function can be obtained using the linear relationship
between the distribution functions and the moments:

f i
��neq� = wi�Pxx

��neq�

2c�
4 �cix,�

2 − c�
2� +

Pxy
��neq�

c�
4 cix,�ciy,�

+
Pyy

��neq�

2c�
4 �ciy,�

2 − c�
2� +

Qxyy
��neq�

2c�
6 cix,��ciy,�

2 − c�
2�

+
Qyxx

��neq�

2c�
6 ciy,��cix,�

2 − c�
2� +

R��neq�

2c�
8 �cix,�

2 − c�
2�

��ciy,�
2 − c�

2�� , �46�

where the superscript, neq, represents the nonequilibrium
part of the quantity. Evaluating Eq. �46� at the bottom wall
gives

� c�

��

�f5
��neq� − f6

��neq�� −
c�

��

�f5
��neq� − f6

��neq���
y=−H/2

=
c�

��
�Pxy

��neq�

6c�
2 +

�3

18

Qxyy
��neq�

c�
3 �

y=−H/2
−

c�

��
�Pxy

��neq�

6c�
2

+
�3

18

Qxyy
��neq�

c�
3 �

y=−H/2
=

�

����

A�3

6��
sinh���/2�

+
�

����

�3�1

9

A

�
cosh���/2� , �47�

where �3= ���c�+��c�� / ��cs�= �m�
3/4m�

1/4X�+m�
3/4m�

1/4X�� /m.
Comparing Eqs. �45� and �47�, we obtain
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A = −
�D��h�

�1 + 2�1/��cosh���/2� + �3�3/����sinh���/2�
.

�48�

Similarly, the coefficient B can be determined as

B = �D��h�

�m2/�2 + �3�m3/� tanh���/2�
� + 2�1 + �3�3/� tanh���/2�

, �49�

where �m3= ��m�−�m�� / �m�m��1/4. The diffusion flux and
the total mass flux are, respectively, given by

ĵx
�� = 1 −

���ŷ ;��
�1 + 2�1/�����/2;�� + �3�2/�������/2;��

,

�50�

ĵx = �− 2
�m1

�
+

�m2

�2�
	� ĵx

�� − 1�

+
�m2/�2 + �3�m3/� tanh���/2�
� + 2�1 + �3�3/� tanh���/2�

, �51�

where ĵx
��= jx

�� / ��D��h��, ĵx= jx / ��D��h��, ŷ=y /H and
���ŷ ;��=cosh���ŷ�exp�−�� /2� and ���ŷ ;��

=sinh���ŷ�exp�−�� /2�. Integrating along the channel and
normalizing, we obtain

Q�� = 1 −
2

��

���/2;��
�1 + 2�1/�����/2;�� + �3/�������/2;��

,

�52�

Q = �− 2
�m1

�
+

�m2

�2�
	�Q�� − 1�

+
�m2/�2 + �3�m3/� tanh���/2�
� + 2�1 + �3�3/� tanh���/2�

, �53�

where

Q�� = �
−1/2

1/2

ĵx
��dŷ ,

Q = �
−1/2

1/2

ĵxdŷ .

B. Higher-order LB method

The moment system for D2Q16 �38� can be written as

mj
� = �

i

ej,i
� f i

� = 
��, jx
�, jy

�,Pxx
� ,Pxy

� ,Pyy
� ,Qxyy

� ,Qyxx
� ,Qxxx

� ,Qyyy
� ,Rx

�,Ry
�,R�,Sx

�,Sy
�,S�� , �54�

where

ej,i
� = 
1,cix,�,ciy,�,cix,�

2 ,cix,�ciy,�,ciy,�
2 ,cix,�ciy,�

2 ,ciy,�cix,�
2 ,cix,�

3 ,ciy,�
3 ,�cix,�

2 − 3c�
2�cix,�ciy,�,�ciy,�

2 − 3c�
2�cix,�ciy,�,�cix,�

2 − c�
2�

��ciy,�
2 − c�

2�,cix,��cix,�
2 − 3c�

2��ciy,�
2 − 3c�

2�,ciy,��cix,�
2 − 3c�

2��ciy,�
2 − 3c�

2�,cix,�ciy,��cix,�
2 − 3c�

2��ciy,�
2 − 3c�

2�� . �55�

For D2Q16, the species mass flux can be obtained by solving
the following moment equations:

�yPxy
� = ��h� −

1

�D
jx
��, �56�

�yQxyy
� = −

1

��

Pxy
� , �57�

�y�Ry
� + 3c�

2 Pxy
� � = −

1

��

�Qxyy
� − c�

2��ux
�� + c�

2���h� −
1

�D
jx
��	 ,

�58�

�y�3c�
2Qxyy

� − 3c�
4��ux

�� = −
1

��

Ry
�. �59�

From these equations we obtain

�4 j̄x
�� − �5�5 + ��6��2cs

2�y
2 j̄x

�� + 3�7��4cs
4�y

4jx
��

=
�1�X� − X��

2
��2cs

2�y
2jx − 3

�m8

2
��4cs

4�y
4jx, �60�

�m4 j̄x
�� − �5�m5 + ��m6��2cs

2�y
2 j̄x

�� + 3�m7��4cs
4�y

4jx
��

=
�1

2
��2cs

2�y
2jx − 3

�8

2
��4cs

4�y
4jx, �61�

where �4= ���+��� /2, �4m= ���−��� /2, �5= ���
�m� /m�

+��
�m� /m�� /2, �m5= ���

�m� /m�−��
�m� /m�� /2, �6

= ��m� /m�+�m� /m�� /2, �m6= ��m� /m�−�m� /m�� /2, �7
= ���

2m� /m�+��
2m� /m�� /2, �m7= ���

2m� /m�−��
2m� /m�� /2,

�8= ���m�X�+��m�X�� / �2m�, and �m8= ���m�X�

−��m�X�� / �2m�. The solution of these equations is very
complex and, here, we only obtain the solution for the spe-
cial case where m�=m�.

When m�=m�, the equation for jx
�� reduces to
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j̄x
�� − �5 + ���2cs

2�y
2 j̄x

�� + 3��4cs
4�y

4jx
�� = 0. �62�

The solution for ĵx
�� can be written as

ĵx
�� = 1 + Â16���ŷ ;�1� + B̂16���ŷ ;�2� , �63�

where

�1 =�5 + � + ��� + 5�2 − 12�

6�
, �64�

�2 =�5 + � − ��� + 5�2 − 12�

6�
. �65�

Similar to the procedure outlined for D2Q9 above, the inte-

gration constants, Â and B̂, can be obtained from the bound-
ary condition of the distribution functions:

Â16 = −
Bb − Ba

BbAa − BaAb
, �66�

B̂16 = −
Ab − Aa

AbBa − AaBb
, �67�

where

Aa = �1 +
�a2 − 1�

2
� 1

��1
2 − 1	����/2;�1�

+ � 1

��1
−

�6

2
� 1

��1
− �1	�a���/2;�1� , �68�

Ab = �1 +
�b2 − 1�

2
� 1

��1
2 − 1	����/2;�1�

+ � 1

��1
+

�6

2
� 1

��1
− �1	�b���/2;�1� , �69�

Ba = �1 +
�a2 − 1�

2
� 1

��2
2 − 1	����/2;�2�

+ � 1

��2
−

�6

2
� 1

��2
− �1	�a���/2;�2� , �70�
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FIG. 1. Distribution of the normalized species mass flux across the channel for m� /m�=1. �a� Kn=0.05, �b� Kn=0.25, �c� Kn=0.5, and
�d� Kn=1 �symbols: DSMC; solid lines: D2Q16; dashed lines: D2Q9�.
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Bb = �1 +
�b2 − 1�

2
� 1

��2
2 − 1	����/2;�2�

+ � 1

��2
+

�6

2
� 1

��2
− �2	�b���/2;�2� . �71�

The algebraic transformation specific to D2Q16 can be found
in �31�, where analytic solutions for single-component Poi-
seuille flows are obtained. The total species mass flow rate is
given by

Q�� = 1 +
2Â

�1�
���/2;�1� +

2B̂

�2�
���/2;�2� . �72�

IV. RESULTS AND DISCUSSION

The analytic and numerical solutions for the LB methods
are compared with results from the DSMC method. In the
DSMC simulations, hard-sphere molecules are used, and the
collision cross sections �26� are identical for all collision
types. For the higher-order LB method, only numerical solu-
tions are presented, when species masses in the mixture are
different. For the numerical simulations, the transverse direc-
tion is discretized into 50 lattices.

A. Diffusional flux

Figure 1 shows the distribution of the species mass flux
normalized by −�D�Y�, for m� /m�=1. As discussed above,
the normalized species mass flux ĵx

� is unity when the mix-
ture is not confined. Note the kinetic layer near the wall
boundary in Fig. 1. At small Knudsen number, Kn=0.05, ĵx

�

is close to unity at y /H�0.35, and the species mass flux
obeys Fick’s law of diffusion. At y /H�0.35, the normalized
species mass flux rapidly decreases toward the wall. While
D2Q9 captures the exponential decay of the species mass
flux in the kinetic layer, it gives higher species mass flux
than the DSMC method near the wall. The higher-order
scheme D2Q16 is in excellent agreement with the DSMC

method. As Kn increases, the effects of walls become more
important, and even near the centerline ĵx

� is reduced to about
0.92 for Kn=0.25. For Kn=0.5 and 1.0, the shape of ĵx

� is
similar to that for Kn=0.25. However, ĵx

� at the same y rap-
idly decreases as Kn increases.

In the present study, fluid particles are assumed to be dif-
fusely reflected on walls. For small Kn, the fluid mixture
outside the kinetic layer is very close to equilibrium and the
normalized species mass flux is close to unity. The nonequi-
librium terms are significant only in the kinetic layer, the
thickness of which is of the order of the mean free path, and
vanish exponentially toward the center of the channel. Be-
cause of the rapid change of the equilibrium distribution in
the kinetic layer, the nonequilibrium effects are much more
significant than those in single-component Poiseuille flows.
This results in the large slip velocity of individual species
even for small Kn. When Kn�1 and m�=m�, the normalized
species mass flux at a wall is given by �2�+�3� / ���+2�
+�3� for D2Q9. For a ratio of relaxation times �=1.2, which
is the value used in Figs. 1 and 2�a�, the component slip is
about 0.81, which is significantly higher than the values ob-
tained in DSMC and D2Q16 for Kn=0.05. For this case, the
component slip in D2Q16 is about 0.5 when Kn�1.

Figure 2 shows the normalized mass flow rate Q�� for
m� /m�=1 and 2, as a function of Kn. For very small Kn, the
diffusion flux is governed by Fick’s law of diffusion in most
of the channel, and Q�� is close to unity. The mass flow rate
Q�� decreases with Kn, because collisions with walls inhibit
diffusion fluxes. For very large Kn, diffusion processes are
governed only by collisions with walls, and the diffusion flux
is given by

jx
�� = − �DK � Y�, �73�

where DK is the Knudsen diffusivity. The Knudsen diffusiv-
ity scales as

DK � csH . �74�

Therefore, as Kn→�, using the definition of Q�� and the
relation ���Dcs, the normalized mass flow rate can be ap-
proximated as

Kn

Q
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FIG. 2. Normalized total species mass flow rate as a function of Kn. �a� m� /m�=1 and �b� m� /m�=2 �symbols: DSMC; solid lines:
D2Q16; squares: D2Q16 numerical simulations; dashed lines: D2Q9; triangles: D2Q9 numerical simulations; X�=0.5�.
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Q�� �
1

Kn
. �75�

For Kn=O�10�, however, the analysis of the data shows that
the mass flow rate Q�� decreases more slowly than in Eq.
�75� due to the small but finite number of molecular colli-
sions. The asymptotic limit for large Kn is well reproduced
by DSMC and D2Q16, while D2Q9 fails in the Knudsen
diffusion regime. As Kn→�, the mass flow rate Q�� for

D2Q9 approaches 2�1 / �2�1+��. The higher-order scheme
D2Q16 is in good agreement with DSMC for Kn=O�0.1�,
while it slightly underpredicts the mass flow rate for large Kn
numbers.

B. Diffusion slip

Figure 3 shows the normalized velocity, ûx�= ĵx / �̂�, for
m� /m�=2 and X�=0.5 at various Kn numbers. The analytic
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FIG. 3. Normalized velocity
for m� /m�=2 and X�=0.5. �a�
Kn=0.05, �b� Kn=0.25, �c� Kn
=1, and �d� Kn=5 �symbols:
DSMC; solid lines: D2Q16 nu-
merical simulations; dashed lines:
D2Q9; dashed dotted lines: D2Q9
numerical simulations�.
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FIG. 4. Normalized species mass flux for different mole fractions. �a� ĵx
� �b� ĵx

� �squares: DSMC for X�=0.1, triangles: DSMC for X�

=0.5, circles: DSMC for X�=0.9, solid lines: D2Q16 for X�=0.1, dashed lines: D2Q16 for X�=0.5, dashed lines: D2Q16 for X�=0.9;
m� /m�=2; Kn=0.05�.
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solutions for D2Q9 are almost identical to the numerical so-
lutions. For Kn=0.05, both D2Q9 and D2Q16 performs well
near the centerline. However, D2Q9 fails in the Knudsen
layer. Note that D2Q9 does not correctly describe the de-
crease of the diffusion slip velocity with Kn. For very high
Kn numbers, ûx for D2Q9 is given by

ûx = 2
�m1

�
+ �m2� 1

�2�� + 2�1�
−

1

�2�
	 . �76�

D2Q16 well reproduces the characteristics observed in the
DSMC simulations, and gives much better results than D2Q9
for all Kn numbers.

Figure 4 shows the normalized species mass flux for X�

=0.1, 0.5, and 0.9 at Kn=0.05. The mass ratio m� /m� is 2.
The species mass fluxes, ĵx

� and ĵx
�, decrease in magnitude, as

the mass fraction of the lighter species increases. D2Q16
well reproduces the characteristics observed in DSMC. Near
the centerline, ĵx

j approaches unity, as Xj approaches zero.
The normalized species mass flux for varying mass ratio

is shown in Fig. 5. The higher-order LB method well repro-
duces the dependence of the species mass fluxes on the mass
ratio m� /m� in DSMC. The statistical error for DSMC be-
comes more significant as the mass of a heavier species in-
creases.

In isobaric diffusion problems where the pressure is con-
stant, the diffusion slip provides a theoretical explanation of
Graham’s law �39�:

−
X�ux

�

X�ux
� =�m�

m�

. �77�

Graham’s law is an empirical relation and validated by sev-
eral experimental data, especially for high mass ratio mix-
tures �39�. However, the molar flux ratios from the LB
method and the DSMC method do not follow Graham’s law
for the present cases, although the discrepancy is not large.
From Eq. �32�, it can be shown that the standard LB method
follows the Graham’s law for all Kn and all locations only

when �� /��=�m� /m�. In Fig. 5, at the center of the channel,
the molar flux ratio for the LB method with the Wilke for-
mula follows

−
X�ux

�

X�ux
� � �m�

m�
	0.4

. �78�

This relation is also observed in the DSMC results.
Figure 6 shows the normalized total mass flow rate Q as a

function of the mass ratio m� /m�. The magnitude of the dif-
fusion slip velocity increases with m� /m�, and both D2Q16
and D2Q9 well reproduce the trend observed in DSMC.
However, accurate description of the mixture viscosity using,
for example, Wilke formula is required for quantitative pre-
diction. With the original BGK formulation, where the relax-
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FIG. 5. Normalized species mass flux for different mass ratio m� /m�. �a� ĵx
� �b� ĵx

� �squares: DSMC for m� /m�=1.5; triangles: DSMC for
m� /m�=2; circles: DSMC for m� /m�=3; solid lines: D2Q16 for m� /m�=1.5; dashed lines: D2Q16 for m� /m�=2; dashed lines: D2Q16 for
m� /m�=3; X�=0.5; Kn=0.05�.
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ation time � j is given by � j =� j / p, the diffusion slip velocity
is overpredicted in Fig. 6.

C. Discrete lattice effects

The analytic solutions are obtained for the DVB equation.
Due to finite lattice spacing, the LB method involves dis-
cretization errors or discrete lattice effects �40�. The discrete
lattice effects result not only from the discretization of the
DVB equation itself but also from the boundary condition
�21,41,42�. The discretization scheme used in the present fi-
nite difference LB method is of O�
x2�. For the boundary
closure, the halfway scheme is used to obtain second-order
accuracy for a straight wall �18,19,43–45�. Here, fluid lat-
tices in the transverse direction are indexed from 1 to N,
while the boundary lattices are 0 and N+1. In the halfway
scheme, the boundary lattices are located at y=−H /2−
 /2
for the wall boundary located at y=−H /2, while the bound-
ary lattices are located at y=H /2+
 /2 for the upper wall.

The unknown distribution functions at the wall boundary lat-
tices are given by Eq. �43�.

In Fig. 7, numerical solutions for various resolutions are
compared with the analytic solution for D2Q16 at Kn=0.1
and 1.0. Even for low resolution of N=5, the kinetic layer is
captured and the overall mass flow rate is well predicted. The
numerical solution is in excellent agreement with the ana-
lytic solution for N=50.

Figure 8 shows the spatial discretization errors for the
diffusion flux predicted by D2Q16 for a mixture of species
with equal molecular masses. The error is defined by

� =

Qa

�� − Qn
��


Qa
�� ,

where Qa
�� and Qn

�� are the diffusion flux obtained from the
analytic solutions and from the numerical simulations, re-
spectively. For both Kn=0.1 and 1, the present scheme is
approximately of second order except for the low resolution
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FIG. 7. Comparison of numerical solutions for the diffusion flux for D2Q16 with the analytic solution. �a� Kn=0.1 and �b� Kn=1
�symbols: analytic solution; dashed dotted line: numerical solution with N=5; dashed line: numerical solution with N=10; solid line:
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second-order accuracy; m� /m�=1�.

KIM, PITSCH, AND BOYD PHYSICAL REVIEW E 79, 016702 �2009�

016702-10



of N�5. However, the errors are only about 0.1% even for
this low resolution.

V. CONCLUSIONS

The lattice Boltzmann modeling of multicomponent dif-
fusion for finite Knudsen numbers is investigated. Analytic
solutions for binary diffusion in narrow channels, where both
molecular and Knudsen diffusion are of importance, are ob-
tained for the standard and higher-order LB methods and
validated against the results from the direct simulation
Monte Carlo method. For a higher-order LB method with the
D2Q16 quadrature, the analytic solution is obtained only for
the mixture consisting of equal-mass species.

The LB methods are shown to reproduce the diffusion slip
phenomena. However, a modified formulation for the mix-

ture viscosity is required for quantitative prediction, and the
kinetic layer predicted by the standard LB method is quali-
tatively different from that in DSMC simulations. In addi-
tion, the standard LB method fails to predict the asymptotic
behavior of the total mass flow rate and diffusion flux in the
Knudsen diffusion regime. A higher-order LB method based
on the fourth-order Gauss-Hermite quadrature captures the
characteristics observed in the DSMC method with good ac-
curacy. Graham’s law is found to be invalid for the problems
considered here, although the discrepancy is not large.
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